
CHIST-ERA

User empowerment for SEcurity and privacy in Internet of Things

Frameworks Deployment

Deliverable number: D3.3

Version 1.0

Funded by the Future and Emerging Technologies (FET) CHIST-ERA programme of the European Union.

Project Acronym: USEIT
Project Full Title: User empowerment for SEcurity and privacy in Internet of Things
Call: 2015
Grant Number: 20CH21 167531
Project URL: http://useit.eu.org

Editor: Antonio Skarmeta, Universidad de Murcia (UMU) – Spain

Deliverable nature: Report

Dissemination level: Public

Delivery Date: July 2018

Authors: Salvador Pérez, University of Murcia
Jorge Gallego, University of Murcia
Ramón Sánchez University of Murcia
Pedro González-Gil, University of Murcia
Antonio Skarmeta, University of Murcia
Nouha Oualha, CEA
Alexis Olivereau, CEA

Abstract

This document describes the deployment of the C-ITS and Smart Objects frameworks on IoT-enabled environ-
ments. On the one hand, the C-ITS framework is deployed on different scenarios with V2V communications,
in particular, a city, a highway and a national road. In this sense, a series of simulations focused on the Packet
Delivery Ratio (PDR) and vehicle density have been performed. On the other hand, the Smart Objects frame-
work is integrated on a smart building scenario with the aim of protecting large amounts of sensible data in a
efficient and flexible way. Furthermore, an extension of this framework is also proposed in order to provide an
intrusion detection and response mechanism in this smart building use case.

http://useit.eu.org

Contents

1 Introduction 1
1.1 Related deliverables . 1
1.2 Deliverable outline . 1

2 C-ITS framework deployment 2
2.1 Simulation parameters . 2
2.2 City . 3
2.3 Highway . 8
2.4 National . 13
2.5 Results . 18

3 Smart objects framework deployment 19
3.1 Integration on the Smart Building use case . 19
3.2 Interactions . 20
3.3 Extended smart building use case . 25

3.3.1 Interactions . 26
3.3.2 Detection and response to an attack . 26

4 Conclusions 30

List of Figures

2.1 Wave Short Messages format . 2
2.2 Route followed by the main car . 3
2.3 Average PDR for each scenario in the city simulation . 4
2.4 100 nodes histogram . 4
2.5 250 nodes histogram . 5
2.6 500 nodes histogram . 5
2.7 650 nodes histogram . 6
2.8 800 nodes histogram . 6
2.9 1000 nodes histogram . 7
2.10 Detail of the intersections . 8
2.11 Average PDR for each scenario in the highway simulation 9
2.12 100 nodes histogram . 10
2.13 250 nodes histogram . 10
2.14 350 nodes histogram . 11
2.15 450 nodes histogram . 11
2.16 500 nodes histogram . 12
2.17 1000 nodes histogram . 12
2.18 Detail of the intersections . 13
2.19 Average PDR for each scenario in the national simulation . 14
2.20 100 nodes histogram . 15
2.21 250 nodes histogram . 15
2.22 350 nodes histogram . 16
2.23 450 nodes histogram . 16
2.24 500 nodes histogram . 17
2.25 1000 nodes histogram . 17

3.1 Integration of the Smart objects framework on the Smart Building use case 20
3.2 Previous interactions to the launch of our proposal on the Smart Building use case 21
3.3 Smart objects framework interactions for the Smart Building use case 22
3.4 Extended smart building use case with IDS . 25
3.5 Actors and their interactions in the extended smart building use case 26
3.6 Detection and response algorithm . 29

Executive Summary

USEIT wants to use the experience on previous results from projects, such as ABC4Trust, FutureID, Sociotal,
Smartie, ITTSv6, and others, and focus on the identification of the security and privacy components needed to
extend and support the objectives of USEIT vision.

List of Acronyms

SCIM System for Cross-domain Identity Management
NGSI Next Generation Service Interfaces

1 Introduction

The purpose of the present deliverable is to carry out the deployment of the proposed C-ITS and Smart Objects
frameworks on IoT-enabled scenarios. Towards this end, the deliverable will firstly focus on describing the
integration of both frameworks, which were introduced in D3.2, over real use cases (see D1.3). Subsequently,
it will delve into the main interactions performed between the instantiated components and the required FI-
WARE enablers (they were pointed in D3.1), identifying the corresponding messages and processes in each
case to carry out their functionality.

1.1 Related deliverables

This deliverable considers other work provided in the following deliverables:

• D1.3 describes different real use cases in which the proposed frameworks may be deployed, thus lever-
aging their advantages.
• D3.1 offers a description about the main FI-WARE enablers used in USEIT to enable security and privacy.
• D3.2 define the C-ITS and Smart objects frameworks, identifying the main entities and phases defined to

carry out their functionality.

1.2 Deliverable outline

The document consists of two technical chapters:

• Chapter 2 examines the C-ITS framework deployment through a series of simulations in terms of Packet
Delivery (PDR) Ratio and vehicle density.
• Chapter 3 focus on the integration of the Smart object framework on a real IoT use case, by considering

both the components of such framework and the required FI-WARE enablers. Then, it details the main
interactions between such components to fulfill the use case functionality. This chapter presents also an
extension of the propose smart building use case that includes an intrusion detection and response system.

Deliverable D3.3 1

2 C-ITS framework deployment

In this chapter, the deployment of the C-ITS framework is examined. Towards this end, we use Omnet++ [1]
together with the Veins open source vehicular network simulation framework [2]. Three different scenarios are
defined, specifically, a city, a highway and a national road, in order to study the Packet Delivery Ratio (PDR)
evolution in correlation with the car density on the roads. Other key factors that need to be taken into account
are the speed of the vehicles and the impact of buildings that interfere in Line of Sight (LOS) communications.
City simulations will be the ones that will evaluate this latter case, whereas highway and road simulations will
be oriented to the study of the speed impact.

2.1 Simulation parameters

The simulations are based on a principal node that follows a defined route and interacts with the rest of the
vehicles. The main node sends Request broadcast messages every 20 secs (tunable), when the others cars
receive this packet, they answer with a Reply message. The message type used is the Wave Short Message
(WSM) [3], its format consists of a variable-length header followed by a variable length payload, as shown in
Figure 2.1. At the moment, these messages only contain an ID and the message type in the payload field.

Figure 2.1: Wave Short Messages format

The protocol used is 802.11p, and its parameters inside the simulation are:

• TxPower: 20 mW.

• Bitrate: 6 Mbps.

• Sensitivity: -89 dBm.

• Thermal noise: -110 dBm.

• Antenna type: monopole located on the roof.

It is important to notice that the simulation time changes because the main node may leave the scenario earlier,
or later, depending on the traffic. Therefore, the number of request sent may also change.

Deliverable D3.3 2

2. C-ITS framework deployment 2.2. City

2.2 City

The simulation takes place in the city of Erlangen (Germany), particularly, in an area that measures approx.
2500m x 2500m. It is based on the route shown in Figure 2.2, followed by a car. The route does not change,
in order to control this main node. The other cars move around the scenario randomly in each run of the
simulation.

Figure 2.2: Route followed by the main car

Six different scenarios have been defined, varying cars density (no of nodes):
• 100
• 250
• 500
• 650
• 800
• 1000

For each scenario, 20 runs with different car routes have been simulated. In the following, the average results
are presented. Figure 2.3 shows the average PDR and corresponding Confidence Intervals (95%) for each
scenario.
In Table 2.1 the results of the different simulations are shown. The collected data is the duration (s) of the route,
the number of requests sent, the number of requests that have received at least one ack, the PDR (%), and the
confidence interval (95%) of the PDR.
In Figures 2.4 to 2.9, the histograms show the frequency of the number of acks received for a Request message.
It collects information from the 20 runs in each scenario.

Deliverable D3.3 3

2. C-ITS framework deployment 2.2. City

0
10
20
30
40
50
60
70
80
90

100

100 250 500 650 800 1000

PD
R

Number of nodes

PDR (%)

Figure 2.3: Average PDR for each scenario in the city simulation

Node number Time (s) Req sent Req confirmed PDR (%) Conf int
100 426.6 21 9.4 44.8 3.06

250 467.9 22.95 20.4 88.9 3.34

500 1019.3 50.5 48.45 95.9 1.86

650 1148.65 56.85 54.6 96 1.01

800 1576.7 78.2 76.55 97.9 0.69

1000 1953.3 97.25 95.55 98.3 0.84

Table 2.1: Results of the city simulation for each scenario

Number of acks

Fr
eq

ue
nc

y

0

50

100

150

200

250

0 1 2 3 4 5 6 7 10

Frequency vs Number of acks

Figure 2.4: 100 nodes histogram

Deliverable D3.3 4

2. C-ITS framework deployment 2.2. City

Number of acks

Fr
eq

ue
nc

y

0

20

40

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 46 50

Frequency vs Number of acks

Figure 2.5: 250 nodes histogram

Number of acks

Fr
eq

ue
nc

y

0

10

20

30

40

50

0 25 50 75 100

Frequency vs Number of acks

Figure 2.6: 500 nodes histogram

Deliverable D3.3 5

2. C-ITS framework deployment 2.2. City

Number of acks

Fr
eq

ue
nc

y

0

10

20

30

40

50

0 25 50 75 100 125

Frequency vs Number of acks

Figure 2.7: 650 nodes histogram

Number of acks

Fr
eq

ue
nc

y

0

10

20

30

40

0 25 50 75 100 125

Frequency vs Number of acks

Figure 2.8: 800 nodes histogram

Deliverable D3.3 6

2. C-ITS framework deployment 2.2. City

Number of acks

Fr
eq

ue
nc

y

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
9

Figure 2.9: 1000 nodes histogram

Deliverable D3.3 7

2. C-ITS framework deployment 2.3. Highway

2.3 Highway

For this simulation, a highway section has been created with the SUMO-GUI. It is 20 km long and has 3
intersections, separated by 6 km. The highway has two lanes each way. In Figure 2.10 can be seen a detail
of the intersections. The maximum permissible speed is 120 km/h or 74.5 mph. The simulation is based on a
main node (a car) that travels from the right side to the left side of the section. The other cars move around the
scenario randomly in each run of the simulation.

Figure 2.10: Detail of the intersections

Six different scenarios have been defined, varying cars density (no of nodes):

• 100

• 250

• 350

• 450

• 500

• 1000

For each scenario, 20 runs with different car routes have been simulated. In the following, the average results
are presented. Figure 2.11 shows the average PDR and corresponding Confidence Intervals (95%) for each
scenario.

In Table 2.2 the results of the different simulations are shown. The collected data is the duration (s) of the route,
the number of requests sent, the number of requests that have received at least one ack, the PDR (%), and the
confidence interval (95%) of the PDR.

Deliverable D3.3 8

2. C-ITS framework deployment 2.3. Highway

80
82
84
86
88
90
92
94
96
98

100

100 250 350 450 500 1000

PD
R

Number of nodes

PDR (%)

Figure 2.11: Average PDR for each scenario in the highway simulation

Node number Time (s) Req sent Req confirmed PDR (%) Conf int
100 597 29 28.75 99.1 1.69

250 597 29 29 100 0

350 597.05 29 29 100 0

450 597.3 29 28.45 98.1 2.57

500 596.95 29 29 100 0

1000 597 29 29 100 0

Table 2.2: Results of the highway simulation for each scenario

In Figures 2.12 to 2.17, the histograms show the frequency of the number of acks received for a Request
message. It collects information from the 20 runs in each scenario.

Deliverable D3.3 9

2. C-ITS framework deployment 2.3. Highway

Number of acks

Fr
eq

ue
nc

y

0

50

100

150

200

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Frequency vs Number of acks

Figure 2.12: 100 nodes histogram

Number of acks

Fr
eq

ue
nc

y

0

25

50

75

100

125

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Frequency vs Number of acks

Figure 2.13: 250 nodes histogram

Deliverable D3.3 10

2. C-ITS framework deployment 2.3. Highway

Number of acks

Fr
eq

ue
nc

y

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 28

Frequency vs Number of acks

Figure 2.14: 350 nodes histogram

Number of acks

Fr
eq

ue
nc

y

0

20

40

60

80

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Frequency vs Number of acks

Figure 2.15: 450 nodes histogram

Deliverable D3.3 11

2. C-ITS framework deployment 2.3. Highway

Number of acks

Fr
eq

ue
nc

y

0

20

40

60

80

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Frequency vs Number of acks

Figure 2.16: 500 nodes histogram

Number of acks

Fr
eq

ue
nc

y

0

20

40

60

80

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Frequency vs Number of acks

Figure 2.17: 1000 nodes histogram

Deliverable D3.3 12

2. C-ITS framework deployment 2.4. National

2.4 National

For this simulation, a national route section has been created with the SUMO-GUI. It is 20 km long and has
7 intersections, separated by 3 km. The national has two lanes each way. In Figure 2.18 can be seen a detail
of the intersections. The maximum permissible speed is 100 km/h or 62 mph. The simulation is based on a
main node (a car) that travels from the right side to the left side of the section. The other cars move around the
scenario randomly in each run of the simulation.

Figure 2.18: Detail of the intersections

Six different scenarios have been defined, varying cars density (no of nodes):

• 100

• 250

• 350

• 450

• 500

• 1000

For each scenario, 20 runs with different car routes have been simulated. In the following, the average results
are presented. Figure 2.19 shows the average PDR and corresponding Confidence Intervals (95%) for each
scenario.

In Table 2.3 the results of the different simulations are shown. The collected data is the duration (s) of the route,
the number of requests sent, the number of requests that have received at least one ack, the PDR (%), and the
confidence interval (95%) of the PDR.

Deliverable D3.3 13

2. C-ITS framework deployment 2.4. National

80
82
84
86
88
90
92
94
96
98

100

100 250 350 450 500 1000

PD
R

Number of nodes

PDR (%)

Figure 2.19: Average PDR for each scenario in the national simulation

Node number Time (s) Req sent Req confirmed PDR (%) Conf int
100 713.1 35 34.05 97.3 2.55

250 713.25 35 34.85 99.6 0.84

350 713.15 35 34.8 99.4 1.12

450 713.05 35 34.75 99.3 1.14

500 713.15 35 34.6 98.9 1.54

1000 713.35 35 34.7 99.1 1.16

Table 2.3: Results of the national simulation for each scenario

In Figures 2.20 to 2.25, the histograms show the frequency of the number of acks received for a Request
message. It collects information from the 20 runs in each scenario.

Deliverable D3.3 14

2. C-ITS framework deployment 2.4. National

Number of acks

Fr
eq

ue
nc

y

0

25

50

75

100

125

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Frequency vs Number of acks

Figure 2.20: 100 nodes histogram

Number of acks

Fr
eq

ue
nc

y

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Frequency vs Number of acks

Figure 2.21: 250 nodes histogram

Deliverable D3.3 15

2. C-ITS framework deployment 2.4. National

Number of acks

Fr
eq

ue
nc

y

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31 33

Frequency vs Number of acks

Figure 2.22: 350 nodes histogram

Number of acks

Fr
eq

ue
nc

y

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 37

Frequency vs Number of acks

Figure 2.23: 450 nodes histogram

Deliverable D3.3 16

2. C-ITS framework deployment 2.4. National

Number of acks

Fr
eq

ue
nc

y

0

20

40

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 33 35

Frequency vs Number of acks

Figure 2.24: 500 nodes histogram

Number of acks

Fr
eq

ue
nc

y

0

10

20

30

40

50

0 2 4 6 8 11 13 15 17 19 21 23 25 27 29 31 33 35 39
Frequency vs Number of acks

Figure 2.25: 1000 nodes histogram

Deliverable D3.3 17

2. C-ITS framework deployment 2.5. Results

2.5 Results

It can be seen that a 100% PDR is never achieved in the city simulation. The high number of buildings in the
map blocks the communications even in the scenarios with high car density.
In the highway simulations, 100% PDR is easily achieved due to the fact that there is no obstacles between
the different vehicles of the simulations. However, in the 100 and 450 nodes scenarios, and in the national
road simulations, the 100% PDR is not achieved because the random route generation scheduled some zones
in which there were no other cars in the surroundings of the main node. Furthermore, in the national roads
there are more entries and exits than in the highways, thus the vehicles spend less time in the scenario and the
principal vehicle encounters a fewer number of cars in its way.
In consequence, it can be seen that in order to achieve a 100% PDR in an urban scenario, the vehicle density
has to be higher than in a highway or a national road. This is because the impact of the obstacles in the
communications, buildings in this case, is higher than the effect of the speed.

Deliverable D3.3 18

3 Smart objects framework deployment

This chapter is intended to show the integration of the Smart objects framework on the Smart Building real
use case, which has been already introduced, to protect and share large amounts of data. Towards this end,
we deploy each framework component on different devices and FI-WARE enablers in order to provide certain
functionality required by our solution. In this sense, it should be pointed out that the enablers employed in this
case are the Orion Context Broker and the Keyrock IdM, as previously mentioned. Subsequently, we delve
into the main phases of the Smart objects framework, that is, Phase 1 - Symmetric key establishment, Phase 2
- Symmetric key encryption and storage, Phase 3 - Encrypted data event publication and Phase 4 - Encrypted
data event retrieval, and describe interactions performed between the instantiated components and FI-WARE
enablers with the aim of offering a more comprehensive view about functionality of this framework.

3.1 Integration on the Smart Building use case

From the introduced Smart Building use case, we carry out the integration of the main entities identified in
the Smart objects framework by deploying each of them on a different device or FI-WARE enabler, as show
in Figure 3.1. Accordingly, when the Gateway device receives data from Data Sources (step 0.1), it contacts
the ABE Service (ABES) to establish a symmetric key (step 1). Such key has an associated lifetime, so that the
Gateway will use it to protect incoming data of the same type (e.g., related to users) as long as the key is not
expired; in case of key’s expiry, a new key will be established.

Then, the Gateway acts as CP-ABE Delegator entity and provides a CP-ABE access policy to the ABES (play-
ing the CP-ABE Assistant role), in order to protect such key (step 2.1). For instance, when a user accesses the
building and a RFID reading occurs , the Gateway could send the policy {role=“building administrator” or
role=“smart service”}, so that only the building administrator and the smart service would be able to access
certain sensitive user’s data, such as its identifier. Subsequently, when the ABES receives the corresponding ac-
cess policy, it encrypts the symmetric key by the CP-ABE scheme and stores it on the Symmetric Key Database,
acting as the KSS entity (step 2.2). It should be pointed out that previous steps will be only performed when a
new symmetric key needs to be established; otherwise, the Gateway encrypts incoming data by using the es-
tablished symmetric key, and generates a new event including such encrypted information. In particular, when
data come from a RFID reading, it obtains the RFID reader’s location (step 0.2), as well as the user’s identifier
and mobility condition from the Keyrock IdM (step 0.3). To this end, the Gateway makes use of the System for
Cross-domain Identity Management (SCIM) 2.0 [4] and Identity API v3 interfaces provided by this FI-WARE
enabler. Then, the Gateway only encrypts the user’s identifier, which is included with the RFID reader’s loca-
tion and the user’s mobility in the event. This way, these unprotected data are used by the emergency service,
while the user’s identifier is kept protected, thus preserving users’ privacy (this service does not know who user
is).

Once the event has been generated, it is published on the Orion Context Broker (as ESS (step 3)) by using the
OMA Next Generation Service Interfaces (NGSI) [5]. Then, this enabler forwards the event to those Services
(as Applications) previously subscribed on its type (step 4.1). Subsequently, Services request the CP-ABE
encrypted symmetric key from the Symmetric Key Database (step 4.2) and try to decrypt it with their CP-ABE
private keys. If the decryption process is successful, the corresponding service will be able to retrieve data
by using the decrypted symmetric key. Particularly, while RFID reader’s location and user’s mobility will be
accessible for all subscribed services, only the building administrator and the smart service will be able to
access the user’s identifier.

So far, we have shown the integration of the Smart objects framework on the Smart Building use case to properly

Deliverable D3.3 19

3. Smart objects framework deployment 3.2. Interactions

Figure 3.1: Integration of the Smart objects framework on the Smart Building use case

protect data coming from different data sources in an efficient and flexible way. Next section provides a detailed
description of the main messages and processes required by our solution to fulfill with their functionality.

3.2 Interactions

In this section, we delve into the interactions performed by the involved devices and FI-WARE enablers in
the use case previously described, particularly, when a RFID reading occurs. As already mentioned, note that
we assume that the Gateway and the corresponding Service have obtained the CP-ABE public parameters, in
order to perform CP-ABE cryptographic operations. Similarly, the Service has gotten its corresponding CP-
ABE private key through communication with an Attribute Authority entity, as described in [6, 7]. In addition,
we have also considered that the Service is subscribed to the Orion Context Broker to be notified about any
event referring to users’ data. Taking account these premises, Figure 3.2 shows a set of previous steps that
are required before to launch our solution. Specifically, when the Gateway receives information about a RFID
reading (step 0.1.a.), it requests and gets the location of the corresponding reader (reader location) from the
Resource Directory by using the reader identifier (steps 0.2.a. and 0.2.b.). Similarly, the Gateway also requests
and obtains both the user’s id (user id) and the user’s mobility condition (user mobility) from the Keyrock
by using the RFID card identifier (steps 0.3.a. and 0.3.b.). It should be pointed out that payload including in
the response message (0.3.b.) follows a specific format, similar to the one shown in Listing 3.1. Finally, the
Gateway confirms RFID reading data reception to the corresponding reader (step 0.1.b.).

Listing 3.1: Keyrock response payload for a user attribute request
1 {
2 ” u s e r ” : {
3 ” u s e r i d ” : ” 2d6 f 5391−6130−48d8−a 9d0−01 f 20699 a 7 e ” ,
4 ” use r name ” : ” User 1 ” ,
5 ” u s e r m o b i l i t y ” : ” reduced−m o b i l i t y ”
6 }
7 }

• user id unequivocally identifies the corresponding user.
• user name is the user’s name.
• user mobility indicates the user’s mobility condition, that is, if it is a user with reduced mobility or not.

Once the previous steps are performed, our proposal starts, as shown in Figure 3.3.

Deliverable D3.3 20

3. Smart objects framework deployment 3.2. Interactions

Figure 3.2: Previous interactions to the launch of our proposal on the Smart Building use case

During the first phase, the Gateway and the ABES establish a symmetric key (SYMK). For this purpose, the
Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) algorithm [8] is used. By using the ephemeral version of
DH, the establishment of a new symmetric key will require a new key pair, thereby increasing the untraceability
of the encrypted data flow. Thus, the Gateway firstly generates an ephemeral elliptic curve key pair by using
a specific elliptic curve (e.g., NIST P-256). Then, it includes the public key and the selected curve into a
GWEPK structure, which is sent to the ABES (step 1.1). Listing 3.2 shows a GWEPK example following the
format specified by JWA [9]. Such information will be used by the ABES to set the parameters to be used for
the ECDHE algorithm.

Listing 3.2: Example of ephemeral public key information
1 {
2 ” a l g ” : ”ECDH−ES” ,
3 ” enc ” : ”A128GCM” ,
4 ” apu ” : ”QWxpY2U” ,
5 ” apv ” : ”Qm9 i ” ,
6 ” epk ” :
7 {
8 ” k t y ” : ”EC” ,
9 ” c r v ” : ”P−256 ” ,

10 ” x ” : ” g I 0GAILBdu7T53akrFmMyGcsF3n5dO7MmwNBHKW5SV0 ” ,
11 ” y ” : ” SLW xSffzlPWrHEVI30DHM 4egVwt3NQqeUD7nMFpps”
12 }
13 }

• alg indicates the algorithm to generate SYMK (ECDHE).
• enc specifies the algorithm that will be used to encrypt data (AES GCM with a 128-bit key).
• apu and apv contain the Gateway and ABES identifiers, encoded as a base64url string.
• epk is the ephemeral public key represented as a JWK [10].

◦ kty identifies the key type (EC).
◦ crv that specifies the elliptic curve (P-256)
◦ x and y parameters contain the EC point coordinates encoded in base64url.

When the ABES receives this message, it generates its own ephemeral elliptic curve key pair according to

Deliverable D3.3 21

3. Smart objects framework deployment 3.2. Interactions

Figure 3.3: Smart objects framework interactions for the Smart Building use case

the value of crv. Then, it runs the ECDHE algorithm to calculate a shared secret (SDH) with the Gateway
(step 1.2) by using its ephemeral private key (ABESESK) and the GWEPK . To enhance the strength of
the shared symmetric key generation process, we have adopted the Concatenation Key Derivation Function
(Concat-KDF) [11] to derive the SYMK from the SDH . This function uses the GWEPK , the ABES ephemeral
public key (ABESEPK) and the SDH to generate SYMK (step 1.3). Then, the ABES sends the ABESEPK

to the Gateway, following the example of Listing 3.2 (step 1.4). Upon receiving this message, the Gateway
completes the ECDHE algorithm execution to obtain the SDH (step 1.5) by using the ABESEPK and its
ephemeral private key (GWESK). In addition, it executes the Concat-KDF function to derive the SYMK that
will be shared by both entities (step 1.6).

Deliverable D3.3 22

3. Smart objects framework deployment 3.2. Interactions

The second phase focuses on protecting the computed SYMK by using a CP-ABE policy (POL). Towards this
end, the Gateway includes POL into a ENCRYPTION INFO structure. Listing 3.3 shows an example of this
structure.

Listing 3.3: Example of information related to symmetric key encryption
1 {
2 ” t imes t amp ” : ” 2018−12−03T16 : 18 : 02Z” ,
3 ” d e v i c e i d ” : ” h t t p : / / S m a r t B u i l d i n g / Gateway 01 ” ,
4 ” p o l i c y ” :
5 {
6 ” s p e c s ” : ” r o l e = b u i l d i n g a d m i n i s t r a t o r OR r o l e = s m a r t s e r v i c e ” ,
7 ” m e t a d a t a ” : [
8 {
9 ”name” : ” C r e a t i o n D a t e ” ,

10 ” v a l u e ” : ” 2018−12−24T12 : 34 : 32Z” ,
11 ” t y p e ” : ” h t t p : / / s e n s o r m l . com / o n t / swe / p r o p e r t y / DateTimeStamp ”
12 }
13]
14 }
15 }

• timestamp indicates when the message was generated according to ISO 8601 [12] format. By following
this format, the interoperability between the Gateway and the ABES is facilitated.

• device id identifies the Gateway.

• policy provides details about POL to be used to encrypt the SYMK.

◦ specs represents the POL as a tree data structure, where leaf nodes correspond to the different
attributes and intermediate nodes are the AND/OR logical operators.

◦ metadata are a set of attributes providing additional information about the POL.

The ENCRYPTION INFO is encrypted by using AES with the SYMK (step 2.1) and sent to the ABES (step
2.2). Upon receiving this message, the ABES decrypts the ENCRYPTION INFO (step 2.3). Then, it executes
the CP-ABE encryption operation with the provided POL to protect the SYMK (step 2.4). Furthermore, the
ABES generates a unique key identifier associated with the protected SYMK (SYMKid) that will be used by
Services to get such SYMK at phase 4. Next, the ABES stores the protected SYMK and the SYMKid on
the Symmetric Key Database (steps 2.5 and 2.6). Then, the ABES sends the SYMKid to the Gateway (step
2.7). This identifier is used by the latter at phase 3 to identify the SYMK that is employed to encrypt data
of events. In addition, the Gateway establishes a limited lifetime for the SYMK (SYMKlifetime). This way,
when such SYMKlifetime expires, phase 1 should be performed again. Therefore, in case SYMK is obtained
by an attacker, it will only be able to recover the data encrypted with such specific key. Furthermore, note that
the SYMKlifetime is based on the number of published events in order to delimit the amount of data that could
be accessed in an unauthorized way, regardless of the Gateway publication rate.

In the phase 3, the Gateway uses the SYMK to encrypt the user id (step 3.1). Then, it creates a new event
(user event) including the protected user identifier (protected user id) along with the RFID reader’s loca-
tion (reader location) and the user’s mobility condition (user mobility). In addition, other parameters are
included in such event, specifically, the SYMKid, the Gateway identifier and a set of metadata. Note that we
have defined an event as a structure that follows the format specified in Listing 3.4.

Listing 3.4: Event example with encrypted data related to the user identifier
1 {
2 ” d e v i c e i d ” : ” h t t p : / / S m a r t B u i l d i n g / Gateway 01 ” ,
3 ” s y m m e t r i c k e y i d ” : ” 541594b1−2 f 8d−431a−a 5 a 4−666393 e 4 adc 4 ” ,
4 ” e n c r y p t e d d a t a ” : {
5 ” v a l e ” : ”Ewhbw9 e 2 cpyGaa 5XDdOUoA==” ,
6 ” m e t a d a t a ” : [
7 {
8 ”name” : ” D e s c r i p t i o n ” ,
9 ” v a l u e ” : ” User i d e n t i f i e r ” ,

10 ” t y p e ” : ” urn : org−u s e r : i d e n t i f i e r ”
11 }
12]
13 }
14 ” u n p r o t e c t e d d a t a ” : [

Deliverable D3.3 23

3. Smart objects framework deployment 3.2. Interactions

15 {
16 ”name” : ” User ’ s l o c a t i o n ” ,
17 ” v a l u e ” : ” room1 ” ,
18 ” t y p e ” : ” urn : org−u s e r : l o c a t i o n ”
19 } ,
20 {
21 ”name” : ” User ’ s m o b i l i t y c o n d i t i o n ” ,
22 ” v a l u e ” : ” reduced−m o b i l i t y ” ,
23 ” t y p e ” : ” urn : org−u s e r : m o b i l i t y ”
24 }
25]
26 }

• device id is a URI that identifies the Gateway.

• symmetric key id unequivocally identifies the SYMK. This identifier is used by Services to retrieve such
key from the Symmetric Key Database.

• encrypted data contains the AES encrypted data as a base64url string. Additionally, it also includes a set
of metadata that provide additional information about the encrypted data, such as its creation date or the
description.

• unprotected data contains user’s data that do not require to be protected. In this case, the user’s location
and user’s mobility condition.

Then, when the event is created, the Gateway includes it within an NGSI-10 UpdateContext message (Listing
3.5), which is published by this device on the Orion Context Broker (step 3.2).

Listing 3.5: Update message example including a user event
1 {
2 ” c o n t e x t E l e m e n t s ” : [
3 {
4 ” t y p e ” : ” urn : org−s m a r t b u i l d i n g : u s e r ” ,
5 ” i s P a t t e r n ” : ” f a l s e ” ,
6 ” i d ” : ” 2d6 f 5391−6130−48d8−a 9d0−01 f 20699 a 7 e ” ,
7 ” a t t r i b u t e s ” : [
8 {
9 ”name” : ” User e v e n t ” ,

10 ” v a l u e ” : u s e r e v e n t ,
11 ” t y p e ” : ” urn : org−s m a r t b u i l d i n g : e v e n t ” ,
12 ” m e t a d a t a s ” : [
13 {
14 . . .
15 }
16]
17 }
18]
19 }
20] ,
21 ” u p d a t e A c t i o n ” : ”UPDATE”
22 }

• contextElements is a list of context elements, where each element is identified by the id parameter. Note
that a context element contains a list of attributes associated with it. In this case, the context element is
the specific user, while an attribute is the user event.

• updateAction specifies action to be performed over the context element, particularly, updating the user’s
event.

The last phase (phase 4) begins when the Service receives the user event from the Orion Context Broker
through a NGSI-10 Notification message, as shown in Listing 3.6 (step 4.1). Note that the format of this
message is similar to the one employed in the NGSI-10 UpdateContex message.

Listing 3.6: Notification message example including a user event
1 {
2 ” s u b s c r i p t i o n I d ” : ” 2451 c 09 ed 714 fb 3b37d7d5 a 8 ” ,
3 ” o r i g i n a t o r ” : ” h t t p : / / S m a r t B u i l d i n g / O r i o n C o n t e x t B r o k e r ” ,
4 ” c o n t e x t R e s p o n s e s ” : [
5 {
6 ” c o n t e x t E l e m e n t ” :
7 {
8 ” a t t r i b u t e s ” : [

Deliverable D3.3 24

3. Smart objects framework deployment 3.3. Extended smart building use case

9 {
10 ”name” : ” User e v e n t ” ,
11 ” v a l u e ” : u s e r e v e n t ,
12 ” t y p e ” : ” urn : org−s m a r t b u i l d i n g : e v e n t ” ,
13 ” m e t a d a t a s ” : [
14 {
15 . . .
16 }
17]
18 }
19] ,
20 ” t y p e ” : ” urn : org−s m a r t b u i l d i n g : u s e r ” ,
21 ” i s P a t t e r n ” : ” f a l s e ” ,
22 ” i d ” : ”−” ,
23 }
24 }
25]
26 }

Then, the Service performs a request to the Symmetric Key Databases with the SYMKid included in the
user event just received to get the corresponding protected SYMK (steps 4.2 and 4.3). At this point, the
Service tries to decrypt such SYMK using its SK previously obtained. If its SK satisfies the POL that was used
to encrypt the SYMK, this Service will be able to decrypt it (step 4.4) and, therefore, it will be able to retrieve
the user’s identifier (user id) by employing the AES algorithm (step 4.5).

3.3 Extended smart building use case

The basic smart building use case consists of sensors deployed in a building. A building administrator is
responsible of setting up the access policies associated with sensor measurements and managing attributes and
keys for data users. Upon request from users, sensors send their measurements CP-ABE-encrypted with the
associated access policies to requestors through a gateway. In the extended smart building use case, an intrusion
detection and response system is introduced to the basic use case (refer to figure 3.4). The added system is
composed of a set of intrusion detection system (IDS) probes and an IDS manager responsible of managing
IDS probes and providing intrusion responses by collaborating with the building manager and leveraging on
CP-ABE encryption and re-encryption.

In the following, section 3.3.1 describes the interactions between the different actors involved in the extended
smart building use case, and section 3.3.2 details the intrusion detection and response system proposed for the
use case.

Figure 3.4: Extended smart building use case with IDS

Deliverable D3.3 25

3. Smart objects framework deployment 3.3. Extended smart building use case

3.3.1 Interactions

The communications of sensors deployed in the building are based on the CoAP protocol protected using the
security profile of IEEE 802.15.4. On the other hand, the communications from the gateway to the building
administrator and users are based on the client/server HTTP protocol. At setup, the building administrator
sends ABE public parameters along with the current access policies associated with the sensor data to sensors
deployed in the network (message 0 in figure 3.5). All this information is sent by the gateway using the PUT
method of CoAP. Upon request from users using the GET method of CoAP (message 1.1 in figure 3.5), the
sensors send measurements encrypted using CP-ABE through the gateway (message 1.2 in figure 3.5). To
decrypt the received ciphertext, the users first request decryption keys from the building administrator if keys
are not already provided beforehand (messages 1.3 and 1.4 in figure 3.5), and then decrypt the ciphertext.

The deployed IDS probes in the network inspect packets transmitted in the IoT network. If a probe detects an
attack, it sends a message to the IDS manager (message 2.1 in figure 3.5). This latter is responsible of managing
attack alerts and responses. It sends the adequate response to the detected attack in a request sent to the building
administrator (message 2.2 in figure 3.5). The building administrator sends a request to the gateway to insert
new IDS attributes to certain packets by performing CP-ABE re-encryption (message 2.3 in figure 3.5).

Figure 3.5: Actors and their interactions in the extended smart building use case

3.3.2 Detection and response to an attack

Encrypting data is essential to ensure confidentiality, but it is easier to detect malicious activity with access to
all the sent data. While having access to meta-data can be enough to detect certain kinds of attacks (Denial
of Service for example), it is better to have access to the payload of a packet to detect more subtle attacks.
Additionally, it is better to label suspicious data to be processed in a safe and isolated environment instead of
sending it to end users.

One advantage of using CP-ABE is that it allows using multiple attributes within an encryption policy. There-

Deliverable D3.3 26

3. Smart objects framework deployment 3.3. Extended smart building use case

fore, it is possible to remove or add an attribute that is specific to the IDS using the ciphertext-policy re-
encryption algorithm.

3.3.2.1 Ciphertext policy re-encryption

The ciphertext-policy re-encryption applied to CP-ABE allows the network gateway to remove an attribute or
insert a new one into a policy associated with a ciphertext without decrypting the ciphertext. As an illustrative
example, we consider a ciphertext of data that is CP-ABE encrypted under an access policy: ‘Temp OR Test’,
i.e., the ciphertext can be decrypted by users with attributes that satisfy either ‘Temp’ or ‘Test’. Using policy
re-encryption, the gateway reinforces the ciphertext by removing the ‘Test’ attribute, and then inserting the
policy ’Policy’. Thus, the new generated ciphertext will be encrypted under the policy: ‘Temp AND Policy’,
i.e., the ciphertext can be decrypted by users with attributes that satisfy both ‘Temp’ and ‘Policy’. By repeating
the insertion operation, the proposed solution allows to build a ciphertext under a much more strict and larger
access policy.

• Restriction operation: For a CP-ABE ciphertext built under an access structure, the attributes that can
be removed are defined such that there exists a subset composed of the remaining attributes and satisfying
the access policy, because, otherwise the ciphertext cannot be decrypted.

• Insertion operation: We extend CP-ABE encryption with a new algorithm, the policy reinforcement
algorithm. This algorithm aims to reinforce the ciphertext with a new policy. The policy reinforcement
algorithm takes the input comprising the public key, the ciphertext that encloses an access policy, and a
new access policy, and produces a new ciphertext under the new access policy as the output. The algo-
rithm is described in detail in [?] with two instantiations of the proposed algorithm extending Bethencourt
et al’s scheme and Waters’ scheme.

3.3.2.2 Data inspection

Replacing every policy by (policy OR “IS IDS”) at encryptor level will enable IDS to decipher the packets
that are most suspicious and increase its accuracy. This way of operating is specific to CP-ABE and does
not necessitate to give every possible private key (or the master key used to generate them) to the IDS. One
drawback is that CP-ABE does not allow attribute revocation. However, in the unlikely case of an IDS key
compromise, it would still be possible to change the configuration of the system and add a new attribute for the
IDS.

With the ciphertext-policy re-encryption algorithm described in subsection 3.3.2.1, the added “IS-IDS” attribute
can be also removed at the network gateway using the restriction operation i.e., outside the IoT network, the
data is CP-ABE encrypted only under policy. After decrypting the message, the IDS would run two detection
engines. The first one is a signature-based engine that detects malicious payload that try to exploit a vulner-
ability (such as a buffer overflow). In this case one would know for sure that an attack is ongoing and the
system’s response will take this information into account. The second detection engine is anomaly-based, and
will only reflect how unusual the message is. In this instance, a softer response will be required in order to
avoid disturbing the network.

3.3.2.3 Data tainting

The ciphertext-policy re-encryption algorithm proposed in subsection 3.3.2.1 allows new possibilities of re-
sponse to ongoing attack. Anomaly-based detection is not perfect, therefore false positives are not to exclude.
Hence, the response must be adapted to the degree of certainty of the detection: a packet part of a proven attack
must be discarded, but discarding a suspicious and only probably harmful packet might alter the normal be-
havior of the network. A less extreme approach must be undertaken, and tainting suspicious packets allow for
some flexibility while defending the system from attacks. The chosen response consists of tainting the packets

Deliverable D3.3 27

3. Smart objects framework deployment 3.3. Extended smart building use case

that are considered suspicious at the gateway level. Two kinds of suspicious packets are considered: the ones
detected through anomaly-based detection and the ones detected through signature-based detection.
In order to taint irreversibly these packets, the data must be tainted directly. This can be done by reinforcing
encryption of suspicious data by using a new attribute. This would limit the set of devices able to decrypt the
tainted packet. Indeed, the least constrained devices of the network tainted data. In practice, one would change
the policy of each suspicious packets to (policy AND “HANDLES SUSPICIOUS”). Some of the recipients of
this packet may no longer be able to decipher it, but the ones that are less vulnerable to attacks will still be able
to handle them appropriately. This tainting method is called soft tainting.
Moreover, in the case of proven attacks detected by the signature-based detection engine, a similar technique
can be used. Instead of dropping the malicious packets, re-encrypting the malicious messages with an attribute
“HANDLES DANGEROUS” could put the packet into quarantine. This would allow to inspect these malicious
packets further in order to assess the objectives of the attack and analyze the attacker’s behavior. Only the
system administrator would get access to the private key related to this attribute, and no device in the network
would be able to read the message. This tainting method is called hard tainting. This tainting method could
also be used in order to respond to policies not enforced correctly. This could enable to prevent information
from leaking to unauthorized users in the case of a policy less strict than the one enforced in the network.
IoT networks being wireless, this response cannot be enforced instantaneously. Indeed, by the time the IDS
inspects a malicious packet and notifies the administrator, the packet would already have been processed and
transmitted by the gateway. Therefore, the response would stop ongoing attacks rather than the first packet of
the attacks. This also means that it is only possible to taint packets from a misbehaving user and not a specific
malicious packet.

3.3.2.4 Detection and response algorithm

The detection and response algorithm has four different states:
• State A: the IDS analyses the policies used for encryption. At the same time signature and anomaly-based

detection engines are running on the meta-data of the packets.
– If the wrong policy is used or the anomaly-based detection engine triggers an alert, go to state B
– If the signature detection engine triggers an alert, go to state C

• State B: the IDS keeps analyzing the policies used for encryption. The IDS decrypts the packets sent by
the misbehaving device. It analyzes the content of the packets with both a signature and a anomaly-based
detection engine.

– If not possible to decrypt or an anomaly-based alert is triggered, go to state C
– If signature-based alert, go to state D
– After manual inspection of the device, go back to state A

• State C: The IDS keeps analyzing policies, decrypting the packets and asks the network gateway to taint
the content of packets from the misbehaving device with “HANDLES SUSPICIOUS” (corresponds to
soft tainting)

– If signature-based alert, go to state D
– After manual inspection of the device, go back to state A

• State D: The IDS keeps decrypting the packets and asks the network gateway to taint the content of
packets from the misbehaving device with “HANDLES DANGEROUS” (corresponds to hard tainting)

– After manual inspection of the device, go back to state A

Deliverable D3.3 28

3. Smart objects framework deployment 3.3. Extended smart building use case

Figure 3.6: Detection and response algorithm

Deliverable D3.3 29

4 Conclusions

This deliverable is focused on describing the deployment of the C-ITS and Smart Objects frameworks proposed
in D3.2 over real IoT scenarios, by considering different use cases previously described in D1.3. The objective
at the end, it is to demonstrate the advantages of such frameworks in this type of scenarios.
In the case of C-ITS framework, we have evaluated the Packet Delivery Ratio evolution in relation to the car
density on the roads. A series of simulations have been tested in three different scenarios: a city, a highway,
and a national road. Their aim is to study the impact of vehicle speed and buildings in V2V communications.
Furthermore, we have also provided a comprehensive view of the Smart objects framework and the required
interactions to protect large amounts of data in an efficient and flexible way in a real IoT scenario. Towards this
end, we have integrated such framework on the Smart Building use case by the instantiation of the framework
components on different devices and FI-WARE enablers, which were already pointed in D3.1. Then, we have
described the main messages and processes performed by such devices and enablers to fulfill the corresponding
functionality.

Deliverable D3.3 30

Bibliography

[1] “Omnet++ discrete event simulator website,” https://omnetpp.org/, accessed: 2018-12-28.
[2] “Veins open source vehicular network simulation framework website,” http://veins.car2x.org/, accessed:

2018-12-28.
[3] J. Kenney, “Dedicated short-range communications (dsrc) standards in the united states,” Proceedings of

the IEEE, vol. 99, pp. 1162 – 1182, 08 2011.
[4] P. Hunt, K. Grizzle, M. Ansari, E. Wahlstroem, and C. Mortimore, “System for cross-domain identity

management: Protocol,” Internet Requests for Comments, RFC Editor, RFC 7644, September 2015.
[5] O. M. Alliance, “Ngsi context management,” Open Mobile Alliance, 2012.
[6] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryption,” in Security and

Privacy, 2007. SP’07. IEEE Symposium on. IEEE, 2007, pp. 321–334.
[7] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Annual International Conference on the

Theory and Applications of Cryptographic Techniques. Springer, 2005, pp. 457–473.
[8] D. McGrew, K. Igoe, and M. Salter, “Fundamental elliptic curve cryptography algorithms,” Tech. Rep.,

2011.
[9] M. Jones, “Json web algorithms (jwa),” Tech. Rep., 2015.

[10] ——, “Json web key (jwk),” Tech. Rep., 2015.
[11] E. Barker, D. Johnson, and M. Smid, Recommendation for pair-wise key establishment schemes using

discrete logarithm cryptography. National Institute of Standards and Technology, 2006.
[12] G. Klyne and C. Newman, “Date and time on the internet: Timestamps,” Tech. Rep., 2002.

Deliverable D3.3 31

https://omnetpp.org/
http://veins.car2x.org/

	1 Introduction
	1.1 Related deliverables
	1.2 Deliverable outline

	2 C-ITS framework deployment
	2.1 Simulation parameters
	2.2 City
	2.3 Highway
	2.4 National
	2.5 Results

	3 Smart objects framework deployment
	3.1 Integration on the Smart Building use case
	3.2 Interactions
	3.3 Extended smart building use case
	3.3.1 Interactions
	3.3.2 Detection and response to an attack

	4 Conclusions

