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Abstract

We summarize the challenges presented by one of the main building blocks, pairings, of the crypto mechanisms
needed for secure privacy-protecting encryption mechanisms meeting the restrictions of the different use cases.
In particular, we give a high-level overview of the most recent attacks and two suggestions for countermeasures,
along with implementation choices taking into account these countermeasures.
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1 Introduction

This deliverable gives details on a fundamental building block for anonymous signatures and attribute-based
encryption, and of a first step towards crypto implementation. That is, in WP 2 (Cryptographic protocols), tasks
T2.1, T2.2, and T2.3. The building block in question is the security and fast implementation of pairing-based
cryptography.

1.1 Background on pairings

Pairings on elliptic curves have various applications in cryptography, ranging from very basic key exchange
protocols, such as one round tripartite Diffie–Hellman [1] [2], to complicated protocols, such as identity-based
encryption [3] [4] [5] [6]. Pairings also help to improve currently existing protocols, such as signature schemes,
to have shortest possible signatures [7].

1.1.1 Pairings on elliptic curves

Let G1,G2, and GT be cyclic groups of prime order r and assume that the discrete logarithm problem is
intractable in all three groups. An abstract pairing is a bilinear, non-degenerate, efficiently computable map of
the form: ê : G1 ×G2 → GT . We call G1 and G2 the source groups and GT the target group. When G1 6= G2

the pairing is called asymmetric, otherwise it is called symmetric.
Let E be an ordinary elliptic curve defined over a prime field Fp and let r be largest prime such that r|#E(Fp).
The minimal integer k for which all the r-th roots of unity are contained in Fpk is called the embedding degree
of E. For all pairings on elliptic curves that are currently used in cryptography, the source groups G1 and
G2 are r-order subgroups of E(Fpk) and the target group GT is the subgroup µr ⊆ F∗

pk
of rth roots of unity.

(Typically G1 is in fact contained in E(Fp)). That is, a pairing of elliptic curves is a map:

ê : E(Fpk)[r]× E(Fpk)[r]→ µr ⊂ F∗
pk .

The most widely used pairings on ordinary elliptic curves are the Tate pairing and its variants and the Ate
pairing and its variants. All of these different types of pairings can be efficiently computed using variants of
Miller’s algorithm [8].

1.1.2 Attacks on pairings

For a sufficiently generic elliptic curve E/Fp, the complexity of ECDLP in any r-order subgroup of E(Fpk)
is O(

√
r), due to Pollard’s rho algorithm. The complexity of DLP in the multiplicative group F∗

pk
, however,

depends both on the factorisation of k and on how the prime p is constructed. In the case of pairing-friendly
curves, we may assume that the prime p is large (at least 256-bits) and that it is derived from the evaluation of
a polynomial with degree greater that 2. The asymptotic complexity of DLP in F∗

pk
is then

LN [c, `] = exp
[(
c+ o(1)

)(
lnN

)`(
ln lnN

)1−`
]
, (1.1)

with ` ∈ [0, 1], c > 0 and N = pk.
When k is prime, the asymptotic complexity of DLP in F∗

pk
is LN [1/3, 1.923]; the best known attack is the

number field sieve (NFS) method. For composite embedding degrees, Kim and Barbulescu’s [9] improvements
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1. Introduction 1.1. Background on pairings

on the tower number field sieve (TNFS) method have reduced complexity of DLP in F∗
pk

from LN [1/3, 1.923]

to LN [1/3, 1.529]. These new improvements have immediate consequences on the selection of the extension
fields Fpk .

1.1.3 Curve families used for pairings

Curves that are suitable for pairings are called pairing-friendly curves, and these curves must satisfy specific
properties. It is extremely rare that a randomly generated elliptic curve is pairing-friendly, so pairing-friendly
curves have to be generated in a specific way. Examples of famous and commonly used pairing-friendly curves
include Barreto-Naehrig curves [10] (BN curves), Barreto-Lynn-Scott curves [11] (BLS curves), and Kachisa-
Schaefer-Scott curves [12] (KSS curves).
However, these recommendations all pre-date the attacks outlined above. All of these recommendations attempt
to minimize the value of ρ = k log(p)/ log(r) and use k = 8 or 12 for 128-bit security, as previously this was
most beneficial for efficient implementation. Taking into account the most recent attacks, the most logical
suggestions to update the families are to either increase the value of ρ or to increase the embedding degree k. In
the attack paper [9] the option of increasing the base field size Fp is studied, but this is not necessary. Fotiadis
and Konstantinou [13] present families of elliptic curves with increased ρ-value to combat the NFS attacks.
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2 Pairings on Hessian curves

Chloe Martindale (TUE) wrote a paper in collaboration with Chitchanok Chuengsatiansup (Université de Lyon)
‘Pairing-Friendly Twisted Hessian Curves’ [14]. This paper presents efficient formulas for pairing computa-
tions; more details below.

2.1 Choice of curves and embedding degrees

One way to improve the performance of pairings is to improve the performance of the underlying point arith-
metic. Many authors have studied efficient point arithmetic via the representation of elliptic curves in a specific
model, for example, Hessian form [15] [16] and Edwards form [17] [18].

Pairings based on Edwards curves, along with examples of pairing-friendly Edwards curves, were proposed by
Arene, Lange, Naehrig and Ritzenthaler [19]. They found that the computation of line functions necessary to
compute the pairing is much more complicated than if the curves were written in Weierstrass form. In other
words, even though Edwards curves allow faster point arithmetic, this gain is somewhat outweighed by the
slower computation of line functions. Li, Wu, and Zhang [20] proposed the use of quartic and sextic twists for
Edwards curves, improving the efficiency of both the point arithmetic and the computation of the line functions.

Pairings based on Hessian curves with even embedding degrees were proposed by Gu, Gu and Xie [21]. They
provided a geometric interpretation of the group law on Hessian curves along with an algorithm for computing
Tate pairing on elliptic curves in Hessian form. However, no pairing-friendly curves in Hessian form were
given.

Bos, Costello and Naehrig [22] investigated the possibility of using a model of a curve (such as Edwards or
Hessian) allowing for fast point arithmetic and transforming to Weierstrass form for the actual computation of
the pairing. They found that for every elliptic curve E in the BN-12, BLS-12, and KSS-18 families of pairing-
friendly curves, if E is isomorphic over Fp to a curve in Hessian or Edwards form, then it is not isomorphic
over Fpk to a curve in Hessian or Edwards form, where k is the embedding degree. This implies that the point
arithmetic has to be performed on curves in Weierstrass form — not all curves can be written in special forms
such as Hessian or Edwards form. This idea of using different curve models comes at a cost of at least one
conversion between other curve models into Weierstrass form.

In [14] we studied the efficiency of curves in Hessian form for pairing computations. Hessian curves with
j-invariant 0 have degree-3 twists that can also be written in Hessian form. This means that we could take
full advantage of speed-up techniques for point arithmetic and pairing computations that move arithmetic to
subfields via the twist, e.g., as studied for Edwards curves in [20], without the expensive curve conversion to
Weierstrass form. We use the families proposed by [23], in which we could find three families that can be
written in Hessian form.

Regardless of which model of elliptic curve was being studied, most of the previous articles on this topic were
considering even embedding degrees. One of the main advantages of even embedding degrees is the applicabil-
ity of a denominator elimination technique in the pairing computation (avoiding a field inversion) which does
not directly apply to odd embedding degrees. Examples of pairing algorithms for curves in Weierstrass form
with odd embedding degree include the work by Lin, Zhao, Zhang and Wang in [24], by Mrabet, Guillermin
and Ionica in [25], and by Fouotsa, Mrabet and Pecha in [26].

Due to the recent advances in number field sieve (NFS) techniques for attacking the discrete logarithm problem
for pairing-friendly elliptic curves over finite fields described above, it is necessary to re-evaluate the security of
pairing-friendly curves. In [13], Fotiadis and Konstantinou propose countering these attacks by using families
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2. Pairings on Hessian curves 2.2. Our contributions

with a higher ρ-value. In this paper, we investigate the feasibility of an alternative method: increasing the
embedding degree.
This has the advantage of keeping the low ρ-value of previously proposed families, but it is disadvantaged by
the less efficient pairing computations. This article attempts to analyze the use of Hessian curves in combating
this. Previous research on computing pairings with Hessian curves addressed only even embedding degrees,
and in order to make use of degree-3 twists the embedding degree should be divisible by 6. Prior to the NFS
attacks and their variants, the favoured embedding degree for 128-bit security was 12, so that to increase the
embedding degree while making use of cubic twists the next candidate is 15. However, as 15 is odd the formulas
of [21] do not apply; for this reason one focus of this article is to provide formulas for embedding degree 15.
Similarly, the pre-NFS favourite embedding degree for 192-bit security was 18, which we propose to increase
to 21. Observe further that for 192-bit security, the families of [13] all require the embedding degree to be
greater than 21.

2.2 Our contributions

In [14], we present formulas for computing pairings on both G1×G2 and G2×G1 for a curve given in Hessian
form that admits degree-3 twists. These formulas exploit the degree-3 twists where possible: in moving the
point arithmetic in Fpk to Fpk/3 and performing the computations for the line functions in Fpk/3 in place of
Fpk . For efficient curve arithmetic (before applying the use of twists) we refer to Bernstein, Chuengsatiansup,
Kohel, and Lange [27].
We analyze the efficiency of the pairing computation in each case, focussing on the embedding degrees that
should correspond to 128- and 192-bit security. Our analysis shows that for embedding degree 12, Hessian
curves are outperformed by twisted Edwards curves, but for embedding degrees 15, 21, and 24 our formulas
give the most efficient known pairing computation. We do not consider 18 as we do not know of any curve
constructions for this case. As explained above, our main focus is on odd embedding degrees, as we propose
the use of k = 15 and k = 21 as a countermeasure against the NFS attacks and their variants.
We also give concrete constructions of pairing-friendly Hessian curves for both embedding degrees and a proof-
of-concept implementation of the optimal ate pairing for these cases.
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3 Pairings with post-TNFS 128-bit security

Chloe Martindale (TUE) has written a paper in collaboration with Georgios Fotiadis from the University of the
Aegean ‘Optimal TNFS-secure pairings on elliptic curves with even embedding degree’ [28].

The main goal of this paper to present the best choice of pairing and of elliptic curve that gives 128-bit security
according to the state-of-the-art. As families of TNFS-secure elliptic curves are already presented in [13],
our main contribution is a comprehensive comparison of pairings and elliptic curve shapes and the consequent
selection of a curve from the available families. To our knowledge, this is the first suggestion of a 128-bit secure
pairing-friendly elliptic curve that takes into account the latest attacks described in Section 1.1.2.

Our comparison takes into account competing candidates for the most efficient pairings [28, Section 2] and
competing curve shapes for the most efficient curve arithmetic [28, Section 3]. We also compute the optimal
elliptic curve and pairing choice for a 128-bit security level among known candidates; the conclusions are
summarized below.

Additionally, we present a new analysis for efficient curve arithmetic in the case of quadratic twists of Edwards
curves and Jacobi Quartic curves for the Ate pairing, and of sextic twists of Jacobi Quartic curves.

For every case that we consider we presented an implementation in MAGMA, available at www.
martindale.info/research.

3.1 Operation counts

We summarize below the operation counts for each pairing and curve type addressed in [28]. In [28] we applied
this review to choose the optimal curve in each known TNFS-secure compact family for 128-bit security level
(of which there are 9 competing to be the fastest and to which our methods may be applied), and give the best
pairing and curve shape for this curve. We then present the best choice of curve, pairing, and curve shape from
these 9 choices, giving the optimal known TNFS-secure pairing-friendly elliptic curve for 128-bit security
level, as presented in more detail in [28]. This method can easily be applied also to 192- and 256-bit security
level.

Notation

• s: time required to square an Fp-element.

• m: time required to multiply an Fp-element.

• mc: time required to multiply by a (small) constant in Fp.

• DBL: doubling steps of Miller’s algorithm.

• ADD: addition steps of Miller’s algorithm.

• e: final exponentiation in Miller’s algorithm.

• bx: the bit length of x.

• wx: the Hamming weight of x.

In Tables 3.1 and 3.2, we compare operation counts for DBL and ADD in each of the cases studied in [28]. For
simplicity, where relevant the operation counts are for mixed addition (not general addition). The total cost of
the twisted Ate pairing âe is

(bTe − 1)DBL + (wTe − 1)ADD + e
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3. Pairings with post-TNFS 128-bit security 3.2. Results

and the total cost of the optimal Ate pairing â0 with parameter s is

(bs − 1)DBL + (ws − 1)ADD + e.

Table 3.1: Operation counts for DBL

DBL JQ on G1 ×G2 JQ on G2 ×G1 Ed on G1 ×G2 Ed on G2 ×G1

2|k (k2 + k + 4)m
(
2k2 + k

)
m (k2 + k + 4)m (2k2 + k)m

j 6= 0, 1728 +(k2 + 8)s + 1mc +3k2s + k2

4 mc +(k2 + 7)s + 2mc + 11k2

4 s + k2

2 mc
4|k (k

2

2 + 3k
2 + 3)m ( 15k

2

16 + k
2 )m (k

2

2 + 3k
2 + 4)m (2k2 + k)m

j = 1728 +(k2 + 7)s + 1mc + 23k2

16 s + k2

16mc +(k2 + 7)s + 2mc + 11k2

4 s + k2

2 mc
6|k (k

2

3 + 4k
3 + 4)m

(
2k2 + k

)
m (k

2

3 + 4k
3 + 4)m (2k2 + k)m

j = 0 +(k2 + 8)s + 2mc +3k2s + k2

4 mc +(k2 + 7)s + 3mc + 11k2

4 s + k2

2 mc

Table 3.2: Operation counts for hADD

ADD JQ on G1 ×G2 JQ on G2 ×G1 Ed on G1 ×G2 Ed on G2 ×G1

2|k (k2 + k + 16)m
(
5k2 + k

)
m (k2 + k + 12)m (4k2 + k)m

j 6= 0, 1728 +1s + 4mc +k2

4 s + k2mc +1mc +k2

4 mc
4|k (k

2

2 + 3k
2 + 12)m ( 3k

2

2 + k
2 )m (k

2

2 + 3k
2 + 12)m (4k2 + k)m

j = 1728 +7s + 1mc + 7k2

16 s + k2

16mc +1mc +k2

4 mc
6|k (k

2

3 + 4k
3 + 16)m

(
5k2 + k

)
m (k

2

3 + 4k
3 + 12)m (4k2 + k)m

j = 0 +1s + 5mc +k2

4 s + k2mc +2mc +k2

4 mc

Besides the comparison in terms of operation count, we also gave the timing of our MAGMA implementation
for each of the examples in [28]. These timings are definitely not optimal (but serve as a basic comparison
between families) as we have not yet considered optimising finite field arithmetic and the implementation is not
yet in C. We leave this for future work.

3.2 Results

We gave a comprehensive comparison of the competing proposals put forward in the literature for curve shapes
and pairing choices for elliptic curves with even embedding degree, for each known TNFS-secure complete
pairing-friendly family for 128-bit security level. We additionally provided the formulas for the ‘gaps’ in the
literature: utilizing quadratic twists for pairings on G2 × G1 with Jacobi Quartic and Edwards curves, and
utilizing sextic twists for pairings on G1 ×G2 with Jacobi Quartic curves.

Our comparisons showed that, from the currently known TNFS-secure families, the best pairing implementation
choice for 128-bit security is the optimal Ate pairing applied to the Jacobi Quartic elliptic curve E/Fp : y2 =
dx4 + 1 (utilizing quartic twists), where

p = 33519519824866674538373388484527266060280336069350658964695523488
42908133596080151967071453287452469772970937967942438575522391344
438242727636910570385409
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and
d = 83798799562166686345933471211318165150700840173376647411738808721

07270333990200379917678633218631174432427344919856096438805978361
09560681909227642596352.

This choice comes from Family 1 in [28], for which our MAGMA implementation currently runs in 16ms. We
leave an optimised implementation of this example to future work.
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4 Conclusions

We have presented two papers studying the two options for updating the security of pairings following the
recent attacks. The first, joint work with Chitchanok Chuengsatiansup, studies the option of increasing the
embedding degree. The second, joint work with Georgios Fotiadis, studies the option of increasing the ρ-value.
Both papers give concrete implementation choices; the second also gives a comprehensive comparison between
all implementation choices and an optimal choice. In follow-up work we will compare these two methods and
look at decreasing bandwidth requirements using genus 2 curves.
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